
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321554154
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321554154
https://plusone.google.com/share?url=http://www.informit.com/title/9780321554154
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321554154
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321554154/Free-Sample-Chapter

THE SCRUM FIELD GUIDE

Lacey_Book.indb i 2/22/12 1:36 PM

Agile software development centers on four values, which are identified
in the Agile Alliance’s Manifesto*:

 1. Individuals and interactions over processes and tools
 2. Working software over comprehensive documentation
 3. Customer collaboration over contract negotiation
 4. Responding to change over following a plan

The development of Agile software requires innovation and responsiveness, based on
generating and sharing knowledge within a development team and with the customer.
Agile software developers draw on the strengths of customers, users, and developers
to find just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences
of such Agile developers. Individual books address individual techniques (such as Use
Cases), group techniques (such as collaborative decision making), and proven solutions
to different problems from a variety of organizational cultures. The result is a core of
Agile best practices that will enrich your experiences and improve your work.

* © 2001, Authors of the Agile Manifesto

Visit informit.com/agileseries for a complete list of available publications.

The Agile Software Development Series
Alistair Cockburn and Jim Highsmith, Series Editors

THE SCRUM FIELD GUIDE

PRACTICAL ADVICE FOR YOUR FIRST YEAR

MITCH LACEY

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Lacey_Book.indb iii 2/22/12 1:36 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Lacey, Mitch.
 The scrum field guide : practical advice for your first year / Mitch
Lacey.—1st ed.
 p. cm.
 Includes index.
 ISBN 0-321-55415-9 (pbk. : alk. paper)
1. Agile software development. 2. Scrum (Computer software development)
I. Title.
 QA76.76.D47L326 2012
 005.1—dc23 2011040008

Copyright © 2012 Mitchell G. Lacey

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-55415-4
ISBN-10: 0-321-55415-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, October 2013

This book is dedicated to two teams; The first team is my family.
My wife, Bernice, and my kids, Ashley, Carter, and Emma—without their

support and constantly asking “are you done yet?” this book would not
be here. They kept me focused and supported me throughout.

The second team is the group of guys from the Falcon project while
at Microsoft. John Boal, Donavan Hoepcke, Bart Hsu, Mike Puleio,

Mon Leelaphisut, and Michael Corrigan (our boss), thank you for having
the courage to leap with me. You guys made this book a reality.

Lacey_Book.indb v 2/22/12 1:36 PM

This page intentionally left blank

 vii

CONTENTS

Foreword by Jim Highsmith xix

Foreword by Jeff Sutherland xxi

Preface xxv

Acknowledgments xxix

About the Author xxxi

Chapter 1 Scrum: Simple, Not Easy 1
The Story 1
Scrum 6

What Is Scrum? 6
Implementing Scrum 7
When Is Scrum Right for Me? 13
Change Is Hard 14

Keys to Success 17
References 18

Part I Getting Prepared 19

Chapter 2 Getting People On Board 21
The Story 21
The Model 27
Change Takes Time 28

Establish a Sense of Urgency 28
Form a Powerful Guiding Coalition 29
Create a Vision/Paint a Picture of the Future 29
Communicate the Vision 29

Lacey_Book.indb vii 2/22/12 1:36 PM

viii Contents

Empower Others to Act on the Vision 30
Plan for and Create Short-Term Wins 31
Consolidate Improvements 31
Institutionalize New Approaches 31

Keys to Success 31
Be Patient 32
Provide Information 32

References 32

Chapter 3 Using Team Consultants to Optimize Team Performance 33
The Story 33
The Model 37

Establishing a Team Consultant Pool 38
Building Your Team 40

Keys to Success 45
Accountability 45
Experiment 46
Be Cautious of Overloading 47
Plan for Potential Downtime 47
Team Consultants Are Not a Replacement for Dedicated Teams 47

References 48
Works Consulted 48

Chapter 4 Determining Team Velocity 49
The Story 49
The Model 54

The Problem with Historical Data 55
Shedding Light on Blind Estimation 56
Wait and See (Use Real Data) 59
Truncated Data Collection 62

Keys to Success 63
References 65

Chapter 5 Implementing the Scrum Roles 67
The Story 67
The Model 70

Choosing Roles 72
Mixing Roles 73
When, Not If, You Decide to Mix Roles Anyway 75

Keys to Success 76

Lacey_Book.indb viii 2/22/12 1:36 PM

 Contents ix

Chapter 6 Determining Sprint Length 77
The Story 77
The Model 80

Project Duration 81
Customer/Stakeholder Group 82
Scrum Team 83
Determining Your Sprint Length 84
Be Warned 86
Beyond the Quiz 87

Keys to Success 87
Sprints Longer Than Four Weeks 88
Extending Sprint Length 88

References 88

Chapter 7 How Do We Know When We Are Done? 89
The Story 89
The Model 91

Introduction 92
Brainstorming Session 92
Categorization Session 93
Sorting and Consolidation Session 94
Definition of Done Creation 96
What About “Undone” Work? 97

Keys to Success 97
References 97

Chapter 8 The Case for a Full-Time ScrumMaster 99
The Story 99
The Model 102
Keys to Success 108

Removing Impediments/Resolve Problems 109
Breaking Up Fights/Acting as Team Mom 109
Reporting Team Performance 109
Facilitate and Help Out Where Needed 110
Educate the Organization and Drive Organizational Change 111
In Summary 111

References 112
Work Consulted 112

Lacey_Book.indb ix 2/22/12 1:36 PM

x Contents

Part II Field Basics 113

Chapter 9 Why Engineering Practices Are Important in Scrum 115
The Story 115
The Practices 119

Implementing Test-Driven Development 120
Refactoring 121
Continuous Integration to Know the Status of the System at All Times 122
Pair Programming 124
Automated Integration and Acceptance Tests 125

Keys to Success 126
Not a Silver Bullet 127
Starting Out 127
Get the Team to Buy In 128
Definition of Done 128
Build Engineering into Product Backlog 128
Get Training/Coaching 128
Putting It Together 128

References 129
Works Consulted 129

Chapter 10 Core Hours 131
The Story 131
The Model 134

Co-located Teams 134
Distributed and Part-Time Teams 136

Keys to Success 138

Chapter 11 Release Planning 139
The Story 139
The Model 142

Sketch a Preliminary Roadmap 143
Add a Degree of Confidence 145
Include Dates and Adjust as Needed 145
Maintaining the Release Plan Throughout the Project 148
Determining the End Game 149

Keys to Success 151
Communicate Up Front and Often 151
Update the Release Plan after Every Sprint 151
Try to Do the Highest Priority Items First 151
Refine Estimates on Bigger Items 151

Lacey_Book.indb x 2/22/12 1:36 PM

 Contents xi

Deliver Working Software 152
Scrum and Release Planning 152

References 152

Chapter 12 Decomposing Stories and Tasks 153
The Story 153
The Model 155

Setting the Stage 156
Story Decomposition 157
Task Decomposition 160

Keys to Success 163
References 164
Works Consulted 164

Chapter 13 Keeping Defects in Check 165
The Story 165
The Model 166
Keys to Success 169
References 169
Work Consulted 170

Chapter 14 Sustained Engineering and Scrum 171
The Story 171
The Model 174

Dedicated Time Model 174
Data Gathered Over Time 175
Dedicated Team Model 175

Keys to Success 177
Cycle Dedicated Maintenance Team Members 177
Retrofit Legacy Code with Good Engineering Practices 178
In the End 178

References 178

Chapter 15 The Sprint Review 179
The Story 179
The Model 182

Preparing for the Meeting 183
Running the Meeting 184

Keys to Success 185
Take Time to Plan 185
Document Decisions 186

Lacey_Book.indb xi 2/22/12 1:36 PM

xii Contents

Ask for Acceptance 186
Be Brave 186

Works Consulted 187

Chapter 16 Retrospectives 189
The Story 189
The Practice 191

Give Retrospectives Their Due Diligence 192
Plan an Effective Retrospective 192
Run the Retrospective 194

Keys to Success 196
Show Them the Why 196
Build a Good Environment 196
Hold Them When You Need Them 197
Treat Retrospectives Like the First-Class Citizens They Are 197

References 197

Part III First Aid 199

Chapter 17 Running a Productive Daily Standup Meeting 201
The Story 201
The Model 204

Time of Day 204
Start and End on Time 205
Expose Hidden Impediments 207
End with the Beginning in Mind 208

Keys to Success 209
Keep the Meeting Cadence 209
Stand; Don’t Sit 209
Work As a Team 210
Be Patient 211

Chapter 18 The Fourth Question in Scrum 213
The Story 213
The Model 216
Keys to Success 216
References 217

Lacey_Book.indb xii 2/22/12 1:36 PM

 Contents xiii

Chapter 19 Keeping People Engaged with Pair Programming 219
The Story 219
The Model 221

Promiscuous Pairing 222
Micro-Pairing 223

Keys to Success 226
References 227

Chapter 20 Adding New Team Members 229
The Story 229
The Model 231

The Exercise 233
Keys to Success 234

Accept the Drop in Velocity 234
Choose Wisely 235
Risky Business 235

References 235

Chapter 21 When Cultures Collide 237
The Story 237
The Model 242
Keys to Success 247

Control Your Own Destiny 247
Work with What You Have 248
Stay the Course 249

References 250
Works Consulted 250

Chapter 22 Sprint Emergency Procedures 251
The Story 251
The Model 253

Remove Impediments 254
Get Help 254
Reduce Scope 254
Cancel the Sprint 255

Keys to Success 256
References 257

Lacey_Book.indb xiii 2/22/12 1:36 PM

xiv Contents

Part IV Advanced Survival Techniques 259

Chapter 23 Sustainable Pace 261
The Story 261
The Model 265

Shorten Iterations 268
Monitor Burndown Charts 269
Increase Team Time 270

Keys to Success 270
References 271

Chapter 24 Delivering Working Software 273
The Story 273
The Model 277

Core Story 277
Number of Users 278
Start with the Highest Risk Element 279
Expand and Validate 279

Keys to Success 280
Change in Thinking 281
Rework 281
Focus on End-to-End Scenarios 282

Work Consulted 283

Chapter 25 Optimizing and Measuring Value 285
The Story 285
The Model 287

Feature Work 288
Taxes 288
Spikes 289
Preconditions 290
Defects/Bugs 290
Structuring the Data 291
Using the Data 291

Keys to Success 292
Educate Stakeholders 292
Work with Stakeholders 292
Determine Trends and Patterns 293

Works Consulted 293

Lacey_Book.indb xiv 2/22/12 1:36 PM

 Contents xv

Chapter 26 Up-Front Project Costing 295
The Story 295
The Model 299

Functional Specifications 300
User Stories 300
Estimating Stories 301
Prioritizing Stories 302
Determining Velocity 302
Deriving Cost 302
Build the Release Plan 303

Keys to Success 303
References 304

Chapter 27 Documentation in Scrum Projects 305
The Story 305
The Model 308

Why Do We Document? 309
What Do We Document? 309
When and How Do We Document? 310
Documenting in an Agile Project 313
Starting Projects without Extensive Documentation 314

Keys to Success 315
References 316

Chapter 28 Outsourcing and Offshoring 317
The Story 317
The Model 320

Consider the True Costs 320
Dealing with Reality 322

Keys to Success 324
Choose the Right Offshore Team 324
Allocate the Work in the Least Painful Way 325
Stick with the Scrum Framework 325
Build a One-Team Culture 326
Be Prepared to Travel 327
Have a Project/Team Coordinator 328
Never Offshore When… 328

References 329
Work Consulted 329

Lacey_Book.indb xv 2/22/12 1:36 PM

xvi Contents

Chapter 29 Prioritizing and Estimating Large Backlogs 331
The Story 331
The Model 334

Team 334
Stakeholders 335

Keys to Success 338
Preplanning Is Essential 338
Focus Discussions and Set Time Limits 338
Use a Parking Lot for Unresolvable Disagreements 339
Bring Extra Cards/Paper for Stories Created in the Room 339
Remind Them That Things Will Change 340

References 340

Chapter 30 Writing Contracts 341
The Story 341
The Model 345

Traditional Contracts and Change Orders 345
Timing 348
Ranges and Changes 350

Keys to Success 353
Customer Availability 354
Acceptance Window 354
Prioritization 354
Termination Clauses 355
Trust 355

References 356

Appendix Scrum Framework 357
The Roles 357

ScrumMaster 358
Product Owner 358
Development Team 358

The Artifacts 359
The Product Backlog 359
The Sprint Backlog 360
The Burndown 361

The Meetings 361
Planning Meetings 361
Daily Scrum Meeting 362

Lacey_Book.indb xvi 2/22/12 1:36 PM

 Contents xvii

Sprint Review 363
Sprint Retrospective 363

Putting It All Together 364

Index 365

Lacey_Book.indb xvii 2/22/12 1:36 PM

This page intentionally left blank

 xix

FOREWORD
BY JIM HIGHSMITH

“Scrum is elegantly deceptive. It is one of the easiest frameworks to understand
yet one of the hardest frameworks to implement well.” So begins Chapter 1 of this
thought-provoking and valuable guide to Scrum. I’ve seen too many organizations
get caught up in the assumed simplicity of Scrum—they never seem to make it past
Scrum 101 to a mature view of Scrum. They practice “rule-based” agility and don’t
appear to see the irony. They don’t understand that change, particularly in larger
organizations, will be difficult—the path bumpy—no matter how devoted they are
to implementation—and that a few simple rules just aren’t enough. This guide helps
you move beyond Scrum 101 to a mature, realistic implementation. It isn’t about the
basic Scrum framework (except for an appendix); it’s about all the harder, but practi-
cal, aspects of making the Scrum framework work for you and your team.

When it comes to agile transitions two hot buttons are often overlooked in
attempts to get Scrum (or other frameworks) up and running—release planning and
technical practices. Mitch is very clear from the beginning that technical practices
are critical to effective Scrum implementations. As he points out, it’s impossible to
achieve the goal of shippable software every sprint without implementing solid tech-
nical practices. His basic list—test-driven development, refactoring, continuous inte-
gration and frequent check-ins, pair programming, and integration and automated
acceptance testing—defines a great starting place for technical practices.

I had to laugh at the story conversation in the Chapter 11, “Release Planning”
(each chapter has a lead-in story that illustrates the issues to be addressed). “But Ste-
phen, we’re using Scrum. I can’t tell you exactly when we’ll be done.” Stephen, of
course, was the manager who needed project completion information for his man-
agement chain. One of the key mindsets required to be an effective agile leader is
what I call “And” management, the ability to find common ground between two
seemingly opposite forces. One of these common paradoxes in Scrum projects is that
between “predictability” and “adaptability.” Traditionalists tend to come down on
the side of predictability, while some agilists come down on the adaptability side. The
secret, of course, is to balance the two—figuring out how to do appropriate levels of
both. In his chapter on release planning, Mitch gives us some good guidelines on how
to approach this paradox in a practical “And” management fashion.

In a recent conversation a colleague mentioned the two things he considered crit-
ical in a nascent Scrum implementation—learning and quick wins. Mitch addresses
both of these in Chapter 2, “Getting People on Board” (indicating how important
they are), when he delves into change management and developing the capability to

Lacey_Book.indb xix 2/22/12 1:36 PM

xx Foreword by Jim Highsmith

learn and adapt as the transition to Scrum continues. Getting quick wins is one of the
points Mitch describes as part of John Kotter’s popular change management system.

Another plus of this book is the short chapters, each devoted to a topic that
helps turn the basic Scrum framework into a workable framework by advocating
key practices. These run the gamut from discussing Scrum values, to defining roles,
to calculating velocity, to determining sprint lengths, to decomposing stories, to
conducting customer reviews. There is also a fascinating chapter on defining what
“done” means—Chapter 7, “How Do We Know When We Are Done?”—a necessity
for effective Scrum projects.

For anyone who is implementing Scrum, or any other agile method for that mat-
ter, Mitch’s book will definitely help you make the transition from elegantly simple
to effective, practical results. It may not make the hard stuff easy, but at least you will
understand what the hard stuff is all about.

— Jim Highsmith
Executive Consultant, ThoughtWorks

Lacey_Book.indb xx 2/22/12 1:36 PM

 xxi

FOREWORD
BY JEFF SUTHERLAND

Mitch and I have worked together for many years training developers in Scrum.
Studying this book can help users overcome the biggest challenges that have occurred
in the last ten years as agile practices (75 percent of which are Scrum) have become
the primary mode of software development worldwide.

Ten years after the Agile Manifesto was published, some of the original signato-
ries and a larger group of agile thought leaders met at Snowbird, Utah, this time to do
a retrospective on ten years of agile software development. They celebrated the suc-
cess of the agile approach to product development and reviewed the key impediments
to building on that success. And they came to unanimous agreement on four key suc-
cess factors for the next ten years.

1. Demand technical excellence.
2. Promote individual change and lead organizational change.
3. Organize knowledge and improve education.
4. Maximize value creation across the entire process.

Let’s see how Mitch’s book can help you become an agile leader.

Demand Technical Excellence
The key factor driving the explosion of the Internet, and the applications on smart-
phones, has been deploying applications in short increments and getting rapid feed-
back from end users. This is formalized in agility by developing product in short
sprints, always a month or less and most often two weeks in length. We framed this
issue in the Agile Manifesto by saying that “we value working software over compre-
hensive documentation.”

The Ten Year Agile Retrospective of the Manifesto concluded that the majority
of agile teams are still having difficulty developing product in short sprints (usually
because the management, the business, the customers, and the development teams do
not demand technical excellence).

Engineering practices are fundamental to software development and 17 percent
of Scrum teams implement Scrum with XP engineering practices. The first Scrum
team did this in 1993 before XP was born. It is only common sense to professional
engineers.

Lacey_Book.indb xxi 2/22/12 1:36 PM

xxii Foreword by Jeff Sutherland

Mitch says in the first chapter that he considers certain XP practices manda-
tory—sustainable pace, collective code ownership, pair programming, test-driven
development, continuous integration, coding standards, and refactoring. These are
fundamental to technical excellence, and the 61 percent of agile teams using Scrum
without implementing these practices should study Mitch’s book carefully and follow
his guidance. This is the reason they do not have shippable code at the end of their
sprints!

There is much more guidance in Mitch’s book on technical excellence, and agile
leaders, whether they be in management or engineering, need to demand the techni-
cal excellence that Mitch articulates so well.

Promote Individual Change and Lead Organizational
Change
Agile adoption requires rapid response to changing requirements along with tech-
nical excellence. This was the fourth principle of the Agile Manifesto—“respond
to change over following a plan.” However, individuals adapting to change is not
enough. Organizations must be structured for agile response to change. If not, they
prevent the formation of, or destroy, high-performing teams because of failure to
remove impediments that block progress.

Mitch steps through the Harvard Business School key success factors for change.
There needs to be a sense of urgency. Change is impossible without it. Agile leaders
need to live it. A guiding coalition for institutional transformation is essential. Agile
leaders need to make sure management is educated, trained, on board, and partici-
pating in the Scrum implementation.

Creating a vision and empowering others is fundamental. Arbitrary decisions
and command and control mandates will kill agile performance. Agile leaders need
to avoid these disasters by planning for short term wins, consolidating improve-
ments, removing impediments, and institutionalizing new approaches. Agile lead-
ers need to be part of management or train management as well as engineering, and
Mitch’s book can help you see what you need to do and how to do it.

Organize Knowledge and Improve Education
A large body of knowledge on teams and productivity is relatively unknown to most
managers and many developers. Mitch talks about these issues throughout the book.

Software Development Is Inherently Unpredictable
Few people are aware of Ziv’s Law, that software development is unpredictable. The
large failure rate on projects worldwide is largely due to lack of understanding of this

Lacey_Book.indb xxii 2/22/12 1:36 PM

 Foreword by Jeff Sutherland xxiii

problem and the proper approach to deal with it. Mitch describes the need to inspect
and adapt to constant change. The strategies in this book help you avoid many pitfalls
and remove many blocks to your Scrum implementation.

Users Do Not Know What They Want Until They See Working
Software
Traditional project management erroneously assumes that users know what they
want before software is built. This problem was formalized as “Humphrey’s Law,”
yet this law is systematically ignored in university and industry training of manag-
ers and project leaders. This book can help you work with this issue and avoid being
blindsided.

The Structure of the Organization Will Be Embedded in the Code
A third example of a major problem that is not generally understood is “Conway’s
Law.” The structure of the organization will be reflected in the code. A traditional
hierarchical organizational structure negatively impacts object-oriented design
resulting in brittle code, bad architecture, poor maintainability and adaptability,
along with excessive costs and high failure rates. Mitch spends a lot of time explain-
ing how to get the Scrum organization right. Listen carefully.

Maximize Value Creation Across the Entire Process
Agile practices can easily double or triple the productivity of a software development
team if the product backlog is ready and software is done at the end of a sprint. This
heightened productivity creates problems in the rest of the organization. Their lack of
agility will become obvious and cause pain.

Lack of Agility in Operations and Infrastructure
As soon as talent and resources are applied to improve product backlog the flow of
software to production will at least double and in some cases be 5–10 times higher.
This exposes the fact that development operations and infrastructure are crippling
production and must be fixed.

Lack of Agility in Management, Sales, Marketing, and Product
Management
At the front end of the process, business goals, strategies, and objectives are often
not clear. This results in a flat or decaying revenue stream even when production of
software doubles.

For this reason, everyone in an organization needs to be educated and trained on
how to optimize performance across the whole value stream. Agile individuals need

Lacey_Book.indb xxiii 2/22/12 1:36 PM

xxiv Foreword by Jeff Sutherland

to lead this educational process by improving their ability to organize knowledge and
train the whole organization.

The Bottom Line
Many Scrum implementations make only minor improvements and find it difficult
to remove impediments that embroil them in constant struggle. Work can be better
than this. All teams can be good, and many can be great! Work can be fun, business
can be profitable, and customers can be really happy!

If you are starting out, Mitch’s book can help you. If you are struggling along the
way, this book can help you even more. And if you are already great, Mitch can help
you be greater. Improvement never ends, and Mitch’s insight is truly helpful.

— Jeff Sutherland
Scrum Inc.

Lacey_Book.indb xxiv 2/22/12 1:36 PM

 xxv

PREFACE

When my daughter Emma was born in late 2004, I felt out of my depth. We seemed
to be at the doctor’s office much more than we had been with our other children. I
kept asking my wife, “Is this normal?” One night, I found my wife’s copy of What to
Expect the First Year on my pillow with a note from her, “Read this. You’ll feel better.”

And I did. Knowing that everything we were experiencing was normal for my
child, even if it wasn’t typical for me, or observed before, made me feel more confi-
dent and secure. This was right around the same time I was starting to experiment
with Scrum and agile. As I started to encounter obstacles and run into unfamiliar
situations, I began to realize that what I really needed was a What to Expect book for
the first year of Scrum and XP.

The problem is, unlike a What to Expect book, I can’t tell you exactly what your
team should be doing or worrying about during months 1–3 or 9–12. Teams, unlike
children, don’t develop at a predictable rate. Instead, they often tumble, stumble, and
bumble their way through their first year, taking two steps forward and one step back
as they learn to function as a team, adopt agile engineering practices, build trust with
their customers, and work in an incremental and iterative fashion.

With this in mind, I chose to structure this book with more of a “I’ve got a pain
here, what should I do” approach. I’ve collected stories about teams I’ve been a part
of or witnessed in their first year of agile life. As I continued down my agile path,
I noticed the stories, the patterns in the companies, were usually similar. I would
implement an idea in one company and tweak it for the next. In repeating this pro-
cess, I ended up with a collection of real-world solutions that I now carry in my vir-
tual tool belt. In this book, I share some of the most common pains and solutions
with you. When your team is hurting or in trouble, you can turn to the chapter that
most closely matches your symptoms and find, if not a cure, at least a way to relieve
the pain.

The Scrum Field Guide is meant to help you fine-tune your own implementa-
tion, navigate some of the unfamiliar terrain, and more easily scale the hurdles we all
encounter along the way.

Who Should Read This Book
If you are thinking about getting starting with Scrum or agile, are at the beginning
of your journey, or if you have been at it a year or so but feel like you’ve gotten lost
along the way, this book is for you. I’m officially targeting companies that are within

Lacey_Book.indb xxv 2/22/12 1:36 PM

xxvi Preface

six months of starting a project to those that are a year into their implementation, an
18-month window.

This is a book for people who are pragmatic. If you want theory and esoteric
discussions, grab another of the many excellent books on Scrum and agile. If, on the
other hand, you want practical advice and real data based on my experience running
projects both at Microsoft and while coaching teams and consulting at large Fortune
100 companies, this book fits the bill.

How to Read This Book
The book is designed for you to be able to read any chapter, in any order, at any time.
Each chapter starts out with a story, pulled from a team, company, or project that I
worked on or coached. As you might expect, I’ve changed the names to protect the
innocent (and even the guilty). Once you read the story, which will likely sound
familiar, I walk you through the model. The model is what I use in the field to help
address the issues evident in the story. Some of the models might feel uncomfort-
able, or you might believe they won’t work for your company. I urge you to fight the
instinct to ignore the advice or modify the model. Try it at least three times and see
what happens. You might be surprised. At the end of each chapter, I summarize the
keys to success, those factors that can either make or break your implementation.

This book is organized in four parts.
Part I, “Getting Prepared,” gives you advice on getting started with Scrum, help-

ing you set up for success. If you are just thinking about Scrum or have just begun to
use it, start there.

Part II, “Field Basics,” discusses items that, once you get started down the agile
path, help you over some of the initial stumbling blocks that teams and organizations
encounter. If you’ve gotten your feet wet with Scrum but are running into issues, you
might start here.

Part III, “First Aid,” is where we deal with some of the larger, deeper issues that
companies face, like adding people to projects or fixing dysfunctional daily standup
meetings. These are situations you’ll likely find yourself in at one point or another
during your first year. These chapters help you triage and treat the situation, allowing
your team to return to a healthy state.

The last part, Part IV, “Advanced Survival Techniques,” contains a series of items
that people seem to struggle with regardless of where they are in their adoption,
things such as costing projects, writing contacts, and addressing documentation in
agile and Scrum projects.

If you are starting from scratch and have no idea what Scrum is, I’ve included a
short description in the appendix at the back of the book to help familiarize you with
the terms. You might also want to do some more reading on Scrum before diving into
this book.

Lacey_Book.indb xxvi 2/22/12 1:36 PM

 Preface xxvii

Why You Should Read This Book
Regardless of where we are on our agile journey, we all need a friendly reminder that
what we are experiencing is normal, some suggestions on how to deal with it, and a
few keys for success. This book gives you all that in a format that allows you to read
only the chapter you need, an entire section, or the whole thing. Its real-life situations
will resonate with you, and its solutions can be applied by any team. Turn the page
and read the stories. This field guide will become a trusted companion as you experi-
ence the highs and lows of Scrum and Extreme Programming.

Supplemental Material for this Book
Throughout this book, you may find yourself thinking, “I wish I had a tool or down-
loadable template to help me implement that concept.” In many cases, you do. If you
go to http://www.mitchlacey.com/supplements/ you will find a list of various files,
images, spreadsheets, and tools that I use in my everyday Scrum projects. While some
of the information is refined, most of the stuff is pretty raw. Why? For my projects, I
don’t need it to be pretty; I need it functional. What you will get from my website will
be raw, true, and from the trenches, but it works.

Lacey_Book.indb xxvii 2/22/12 1:36 PM

http://www.mitchlacey.com/supplements/

This page intentionally left blank

xxix

ACKNOWLEDGMENTS

When I first had the idea for this book, it was raw. Little did I know that I was
attempting to boil the ocean. My wife, Bernice, kept me grounded, as did my kids.
Without their strength, this book would not be here today.

David Anderson, Ward Cunningham, and Jim Newkirk were all instrumental in
helping me and my first team get off the ground at Microsoft. Each of them worked
there at the time and coached us through some rough periods. I still look back at
my notes from an early session with Ward, with a question highlighted saying “can’t
we just skip TDD?” Each of these three people helped turn our team of misfits into
something that was really special. David, Ward, and Jim—thank you.

I thank Mike Cohn and Esther Derby for letting me bounce the original ideas off
them at Agile 2006. Mike continued his support, and we often joked that my book
would be out before his Succeeding with Agile book. When that didn’t happen, he pro-
posed that a better goal might be for me to finish before he was a grandfather. Well,
Mike, I made it—and don’t let the fact that your oldest daughter is still in high school
lessen my accomplishment!

I could not have done this without the help of Rebecca Traeger, the best editor on
the planet. She kept me on track, focused, and helped me turn my raw thoughts and
words into cohesive chapters.

In the first printing, I made a big mistake and forgot to acknowledge my good
friend and frequent reviewer Peter Provost. (Just goes to show that no matter how
perfect something seems, there is always room for improvement.) Peter’s honest feed-
back helped me tremendously, from the first draft to the last.

I would also like to once again thank the following friends, each of whom helped
craft this book into what it is today. Everyone listed here has given me invaluable
feedback and contributed many hours either listening to me formulate thoughts or
reading early drafts. I cannot thank each of you enough, including Tiago Andrade
e Silva, Adam Barr, my artists Tyler Barton and Tor Imsland, Martin Beechen, Arlo
Belshee, Jelle Bens, John Boal, Jedidja Bourgeois, Stephen Brudz, Brian Button, Mike
Cohn, Michael Corrigan, Scott Densmore, Esther Derby, Stein Dolan, Jesse Fewell,
Marc Fisher, Paul Hammond, Bill Hanlon, Christian Hassa, Jim Highsmith, Donavan
Hoepcke, Bart Hsu, Wilhelm Hummer, Ron Jeffries, Lynn Keele, Clinton Keith,
James Kovaks, Rocky Mazzeo, Steve McConnell, Jeff McKenna, Ade Miller, Raul
Miller, Jim Morris, Jim Newkirk, Jacob Ozolins, Michael Paterson, Bart Pietrzak,
Dave Prior, Michael Puleio, René Rosendahl, Ken Schwaber, Tammy Shepherd, Lisa
Shoop, Michele Sliger, Ted St. Clair, Jeff Sutherland, Bas Vodde, and Brad Wilson.

xxx Acknowledgments

I’d also like to thank the team at Addison-Wesley, including Chris Zahn and
Chris Guzikowski. Chris Zahn made me question just about everything I wrote,
which put the words in a different light for me. Chris Guzikowski didn’t fire me even
when I missed the two-year-over-planned date. I appreciate all that your team did to
help guide me through the process.

B ooks don’t just pop out of your head and onto paper. They, like most projects
I’ve ever encountered, are truly a team effort. The people I have mentioned (and likely
a few that I forgot) have listened to me, told me where I was going astray, given me
ideas to experiment with on my teams and with clients, and been there for me when
I needed reviews. I imagine they are as glad as I am that this book is finally in print.
I hope that after you read this, you too will join me in thanking them for helping to
make this guide a reality.

 xxxi

ABOUT THE AUTHOR

Mitch Lacey is an agile practitioner and consultant and is the founder of Mitch Lacey
& Associates, Inc., a software consulting and training firm. Mitch specializes in help-
ing companies realize gains in efficiency by adopting agile principles and practices
such as Scrum and Extreme Programming.

Mitch is a self-described “tech nerd” who started his technology career in 1991
at Accolade Software, a computer gaming company. After working as a software test
engineer, a test manager, a developer, and a variety of other jobs in between, he set-
tled on his true calling, project and program management.

Mitch was a formally trained program manager before adding agile to his proj-
ect tool belt. He began developing agile skills at Microsoft Corporation, where his
team successfully released core enterprise services for Windows Live. Mitch’s first
agile team was coached by Ward Cunningham, Jim Newkirk, and David Anderson.
Mitch cut his agile teeth working as a product owner or ScrumMaster on a variety of
projects. He continued to grow his skills to the point where he was able to help other
teams adopt agile practices. Today, with more than 16 years of experience under his
belt, Mitch continues to develop his craft by experimenting and practicing with proj-
ect teams at many different organizations.

As a Certified Scrum Trainer (CST) and a PMI Project Management Professional
(PMP), Mitch shares his experience in project and client management through Cer-
tified ScrumMaster courses, agile coaching engagements, conference presentations,
blogs, and white papers. Mitch works with companies across the world, from Austria
to Colombia, California to Florida, Portugal to Turkey, and just about everywhere in
between.

Mitch has presented at a variety of conferences worldwide, is the conference chair
for Agile 2012, and sat on the board of directors of the Scrum Alliance and the Agile
Alliance

For more information, visit www.mitchlacey.com where you will find Mitch’s
blog as well as a variety of articles, tools, and videos that will help you with your
Scrum and agile adoption. He can also be found on Twitter at @mglacey and by email
at mitch@mitchlacey.com.

Lacey_Book.indb xxxi 2/22/12 1:36 PM

www.mitchlacey.com

This page intentionally left blank

 305

Chapter 27

DOCUMENTATION IN SCRUM
PROJECTS

We’ve all heard the common myth, Agile means no documentation. While other agile
fallacies exist, this is a big one, and it could not be farther from the truth. Good agile
teams are disciplined about their documentation but are also deliberate about how
much they do and when. In this chapter’s story we find a duo struggling to explain
that while they won’t be fully documenting everything up front, they will actually be
more fully documenting the entire project from beginning to end.

The Story
”Hey, you two,” said Ashley, stopping Carter and Noel in the hallway as they passed
by her office. “I’ve been sensing some resistance from you two over the initial project
documentation. I need it by next Friday for project sign off, OK?” Ashley looked back
at her computer and began typing again, clearly expecting a quick answer.

Carter and Noel looked at each other then back at their manager Ashley before
replying. They had known this conversation was coming but didn’t realize they’d be
accosted in the hallway by an obviously harried Ashley when it did.

“Listen, we can document everything up front like you ask” Noel began as she
and Carter moved to stand close to Ashley’s doorway. “But we don’t think it’s the best
approach. Things change and we cannot promise you that things will go as planned.
Further…” Ashley stopped typing and looked up, interrupting Noel mid-stream.

“Look, I don’t want to argue about something as basic as documentation. I just
need it on my desk by Friday.”

Carter spoke up.
“Ashley,” he began. “Can I have five minutes to try to communicate a different

approach? I know you’ve got a full plate, but I think it’s important for you to under-
stand this point before we table our discussion.”

Ashley glanced at her watch, then nodded. “Five minutes. Go.”
“When I was in college, I worked for our university newspaper,” Carter explained.

I worked as a sports photographer so I always went with the sports writers to the local
football games. I would be on the field, and they would be in the stands.

“It probably won’t surprise you to hear that not one of those sports writers came
to the football game with the story already written. Now, they might have done some
research on the players. They might have talked to the coaches about their game

Lacey_Book.indb 305 2/22/12 1:37 PM

306 Chapter 27 � Documentation in Scrum Projects

plans. They might have asked me to be sure to get some shots of a particular player.
But they didn’t write the article before the game even began.

“That’s kind of what you are asking us to do with the software. You want the
complete story of how this will unfold, including the final game score, before we’ve
even started playing,” said Carter.

“Well, that’s how we get things done around here. Without the documentation, I
can’t get project approval, and I can’t be sure that you guys understand what we need
you to build,” explained Ashley.

Carter continued. “Right. I get that. It’s not unreasonable for you to want some
information before we get started. And you should expect to receive frequent updates
from us on what’s going on with the project. After all, the reporters I worked with
would take notes and write snippets of the article about the game as it was unfolding.
They would come down at halftime to talk to me about the shots I had captured and
the angle they were working on based on how things were going so far.

“But to ask us to tell you what the software will look like, exactly how much it
will cost, and precisely when we’ll be done is like asking us to predict the final score
of the football game. We can tell you how we think it’s going to go, but when things
are changing and unfolding, it’s difficult to predict all the details.”

Ashley nodded. “But things aren’t always that volatile with our projects. We know
basically what we want this to look like. It’s only some things that we aren’t sure of.”

“Right,” said Noel. “And if you’ve got a project where we can nail down most
of the variables and have a clear picture of the final product, we can give you more
documentation.

Carter nodded, “To go back to my sports writer analogy, there were times when
one team was clearly dominating—the game was a blowout. In those cases, the
reporters had their stories mostly written by halftime. They’d already come up with
the headline, filled in a lot of the details, and were just waiting until the end of the
game to add the final stats and score.

“Most times, though, the games were close and the outcome uncertain. In those
cases, the reporters would keep filling in the skeleton of the story with the events as
they happened in real time. They would come down to the field at halftime, and we
would talk about the unfolding story and how they were writing it. We’d strategize
and say ‘if the game goes this way, we’ll take this approach. But if it goes that way, will
take this other approach.’

“Likewise, the level of detail in our documentation should depend on how cer-
tain we are that things aren’t going to change.”

Ashley leaned back in her chair with her hand on her chin, deep in thought. Noel
decided to go in for the kill.

“Ashley, remember when the Deepwater Horizon platform exploded and the oil
started spilling in the Gulf of Mexico? Or the 9/11 attacks in the US? The London
train bombings or the Moscow airport attacks? Or the quake and tsunami in Japan?
Or when Reagan or Kennedy were shot?”

Lacey_Book.indb 306 2/22/12 1:37 PM

 The Story 307

Ashley nodded.
“Well, you would notice a trend in all these events. In the initial accounts, the

media headlines conveyed the big idea, but not many details. All they could tell us
at first was generally what had happened (oil spill/terrorist attack/quake/tsunami/
assassination attempts), when, and where. Why? Because the events were still unfold-
ing and that was all anyone knew for sure. As the reporters on the scene learned more,
they added the new facts to the story and changed the headlines, and the stories, to
reflect the new information.

“All those little updates and facts and details, though, were important to capture
in real time, even if they later had to be updated to reflect changes and new infor-
mation. Without them, much of the information about the events would have been
forgotten in the chaos surrounding it. The reporters didn’t try to write more up front
than they knew. Instead, they recorded what they did know as they went along. Later,
after the details had solidified, they went back through the various articles and wrote
a larger, encompassing synopsis that outlined the specific event from the initial fail-
ures to the current state,” Noel said.

“That’s what we’re suggesting we do: make our documentation a story in prog-
ress. Is this making sense?” asked Carter.

Ashley sat forward.
“I think I get it now. What I originally heard you say was ‘I can’t give you docu-

mentation.’ But what you’re actually saying is that you will document certain things
up front, most things in real time (updating them as necessary to reflect reality), and
some things after the fact. But what does that mean in terms of software exactly?”

Noel spoke up, “One of the things we need to write for this project is the end-user
manual and the customer support reference manual for the call centers. I think you’ll
agree we should not write those before we write the code, correct?”

Ashley nodded.
Noel continued, “Right, so when should we write them? In the past, we have writ-

ten them at the very end of the project. When this happens, we scramble to find the
little details because we forget to write them down, or we say ‘we’ll remember that’
and we never do. The details are essentially lost, and a significant amount of time is
needed to find them and document them, if they can be found at all. In the mean-
time, we’re holding up a release of a functioning system all because we’ve forgotten
exactly what every feature does in the system, and we are re-creating everything so we
can create these manuals.

“What we need to do is document as we go, as soon as we can without doing too
much. That way when we get to the point where the UI stabilizes, let’s say, we can cre-
ate even more detailed user guides, but we will not have lost our details. And if things
change along the way, we will update what we have written to reflect it. It’s a balance
between stability and volatility. The more volatile something is, the more careful we
need to be in what level we document. If it’s stable, we can do something like a large
database diagram model in a tool. If it’s volatile, we might just draw a picture on the

Lacey_Book.indb 307 2/22/12 1:37 PM

308 Chapter 27 � Documentation in Scrum Projects

whiteboard—again, both are documents, database models to be exact, but they are
very different in terms of formality,” finished Noel.

“So, are we on the same page?” asked Carter.
“Yes,” said Ashley. “I get it now. I think this is a good approach and something

that I will advocate, provided you give me regular feedback so I can update senior
executive management. But I still need the big headlines by Friday. Agreed?”

“Agreed,” said Carter and Noel together.
And that was that.

The Model
Many people can quote the part of the Agile Manifesto that states, “working software
over comprehensive documentation,” but they fail to mention the very important
explanatory component that follows: “While there is value in the items on the right,
we value the items on the left more” [BECK]. Scrum teams still value documentation;
they just change the timing of that documentation to be more consistent with their
level of knowledge.

For example, imagine you are in your university world history class. You get to
the point in the class when it’s time to discuss Western European history. Your pro-
fessor says to you, “Now I want each of you to buy my new book Western European
History: The 30th Century. Come prepared for an exam on the first five chapters in
two weeks.”

You would probably look around the room, wondering if what you just heard was
correct and ask a fellow student, “Did he just say 30th century history?”

Common sense tells you that without time machines, it is impossible to read a
factual account of future events—they haven’t happened yet! Sure there are predic-
tors and indicators that suggest what might happen, but nothing is certain. This then
begs the question. If this approach is wrong for a university class, why is the exact
same approach accepted when developing software?

Before we’ve begun any work on a project, we are often asked for exact details as
to what will be delivered, by when, and at what cost. To determine these things, teams
often write volumes of documents detailing how the system will work, the interfaces,
the database table structures, everything. They are, in essence, writing a history of
things that have yet to occur. And it’s just as ludicrous for a software team to do it as
it would be for your history professor.

That doesn’t mean we should abandon documents, and it doesn’t mean that we
should leave everything until the end either. A certain amount of documentation is
essential at each stage of a project. Up front, we use specifications or user stories to
capture ideas and concepts on paper so that we can communicate project goals and
strategies. When we sign off on these plans, we agree that what we have documented
is the right thing to do.

Lacey_Book.indb 308 2/22/12 1:37 PM

 The Model 309

The question, then, is not, should we document, but what should we document
and when. The answer has everything to do with necessity, volatility, and cost.

Why Do We Document?
Every project needs a certain amount of documentation. In a 1998 article on Salon.
com titled “The Dumbing-Down of Programming,” author Ellen Ullman notes how
large computer systems “represented the summed-up knowledge of human beings”
[ULLMAN]. When it comes to system documentation, we need to realize that we’re
not building or writing for us; we are writing for the future. I think Ullman summa-
rizes it best with this snippet from the same article:

I used to pass by a large computer system with the feeling that it represented
the summed-up knowledge of human beings. It reassured me to think of all
those programs as a kind of library in which our understanding of the world
was recorded in intricate and exquisite detail. I managed to hold onto this com-
forting belief even in the face of 20 years in the programming business, where I
learned from the beginning what a hard time we programmers have in main-
taining our own code, let alone understanding programs written and modified
over years by untold numbers of other programmers. Programmers come and go;
the core group that once understood the issues has written its code and moved
on; new programmers have come, left their bit of understanding in the code and
moved on in turn. Eventually, no one individual or group knows the full range
of the problem behind the program, the solutions we chose, the ones we rejected
and why.

Over time, the only representation of the original knowledge becomes the code
itself, which by now is something we can run but not exactly understand. It has
become a process, something we can operate but no longer rethink deeply. Even if
you have the source code in front of you, there are limits to what a human reader
can absorb from thousands of lines of text designed primarily to function, not to
convey meaning. When knowledge passes into code, it changes state; like water
turned to ice, it becomes a new thing, with new properties. We use it; but in a
human sense we no longer know it.

Why is this important? Because we need to realize that, in a human sense, we use
the system and we know the system. That is why we document.

So, what is essential to document and what is needless work? Much of that
depends on the type of system you are building and the way in which you work.
Teams that are co-located need to document less than teams distributed across conti-
nents and time zones. Teams that are building banking systems need to satisfy more
regulatory requirements than teams building marketing websites. The key is to docu-
ment as much as you need and nothing more.

Lacey_Book.indb 309 2/22/12 1:37 PM

310 Chapter 27 � Documentation in Scrum Projects

What Do We Document?
The list of essential documents is different for every project. Going through my list of
recent projects, some frequent documentation items include the following:

 � End user manual
 � Operations user guide
 � Troubleshooting guide
 � Release and update manual
 � Rollback/failover manual
 � User stories and details
 � Unit tests
 � Network architecture diagram
 � DB architecture diagram
 � System architecture diagram
 � Acceptance test cases
 � Development API manual
 � Threat models
 � UML diagrams
 � Sequence diagrams

We didn’t write all these before the project began. And we didn’t wait until the
final sprint to start them either. We did them as the information became available.
Many of the user stories, for instance, were written up front. But some of them were
changed, and others were added as the project progressed and requirements became
clearer. Our unit tests were written as we coded. And at the end of every sprint, we
updated the end user manual to reflect new functionality. We included in our defini-
tion of done what we would document and when we would write it (see Chapter 7,
“How Do We Know When We Are Done?”).

When and How Do We Document?
So if we don’t do it all up front and we don’t save it all for the end, how does doc-
umentation happen in an agile project? Documentation, any documentation, costs
money. The more time it takes to write and update, the more it costs. What agile
projects strive to do, then, is minimize write time, maintenance time, rework costs,
and corrections.

Let’s look at three approaches we can take when documenting our projects.

 � Document heavily in the beginning.
 � Document heavily in the end.
 � Document as we go along.

Lacey_Book.indb 310 2/22/12 1:37 PM

 The Model 311

Document Heavily in the Beginning
Traditional projects rely on early documentation. As you can see from the diagram in
Figure 27-1, a typical waterfall team must capture requirements, build a project plan,
do the system architecture, write test plans, and do other such documentation at the
beginning of the project. If we were to overlay a line that represented working soft-
ware, it would not begin to move up until the blue line started to flatten.

The benefit of this approach is that people feel more secure about the system
being built. The major drawback is that this sense of security is misleading. In point
of fact, though a great deal of time, effort, and money has gone into writing the docu-
ments, no working software has been created. The chances of getting everything right
up front are marginal on stable projects and next to zero on volatile projects. That
means factoring in costly rework and extra time. Chances are good that these high-
priced, feel-good documents will turn into dusty artifacts on the project bookcase.

Document Heavily at the End
When we document heavily at the end, we document as little as possible as the soft-
ware is developed and save all the material needed to release, sustain, and maintain
the system over time until the end of the project. Figure 27-2 illustrates this approach.

The benefits of this approach are that working software is created quickly and
that what is eventually written should reflect what the system does.

The problems with this approach, however, are many. People often forget what
was done and when and what decisions were made and why. Team members on the
project at the end are not necessarily the people on the project in the beginning;
departing team members take much of their knowledge with them when they go.
After the code for a project is complete, there is almost always another high priority

early in the project late in the projecttime

e
f
f
o
r
t

FIGURE 27-1 Traditional project with up-front documentation

Lacey_Book.indb 311 2/22/12 1:37 PM

312 Chapter 27 � Documentation in Scrum Projects

project that needs attention. What usually happens is that most of the team members
go on to the new project, leaving the remaining team member(s) to create the docu-
mentation for the system by themselves. Countless hours are spent hunting for data
and trying to track down and access old team members, who are busy with new work
and no longer have time for something “as insignificant as documentation.”

Though saving documentation until the end is cheaper in the beginning because
more time is spent on actual software development, it is usually expensive in the end
because it can hold up a release or cause support and maintenance issues, as it will
likely contain gaps and faulty information.

Document as We Go
Agile projects do things differently. We acknowledge that while we can’t know every-
thing up front, we do want to know some things. We also maintain that documenta-
tion should be part of each story’s definition of done, so that it is created, maintained,
and updated in real time, as part of the cost of creating working software. Figure 27-3
illustrates the document-as-we-go approach.

The product owner works with the stakeholders and customers to build the
requirements while the team works with the product owner to achieve emergent
design and architecture. The team also keeps the code clean, creating automated
tests, and using code comments and other tools to slowly build other required docu-
mentation for the system, such as the user manuals, operations guide, and more.

The one drawback is that it does take a little longer to code when you document
as you go than it would to fly through the code without having to write a comment
or update an architectural diagram. This is more than offset, though, by the benefits.
There is less waste, less risk of eleventh-hour holdups, and more emphasis on working
software. Much of the documentation is updated automatically as changes are made

early in the project late in the projecttime

e
f
f
o
r
t

FIGURE 27-2 Documenting heavily at the end of the project

Lacey_Book.indb 312 2/22/12 1:37 PM

 The Model 313

to the code, reducing maintenance and rework costs. Just as news reports capture the
details of a story for posterity, real-time documentation of decisions and behavior in
real time minimizes gaps in knowledge and creates a living history of the software for
future teams and projects.

Documenting in an Agile Project
So we agree that in most cases, agile teams will want to document as they go. So what
exactly does that look like on a typical software project? To illustrate, let’s use a docu-
ment that is familiar to almost everyone: the user manual. A waterfall approach would
be to write the entire manual at the end. We’ve discussed why this is a plausible but
risky solution. The more agile way to approach a user manual is to include “update
the user manual” as one of the acceptance criteria for a story that has to do with user-
facing functionality. By doing that, the manual is updated each time working software
is produced.

Let’s say, for example, that I’m writing the user manual for an update to Adobe
Lightroom (my current favorite piece of software). I’m in sprint planning and the
product owner explains that the story with the highest priority is “As an Adobe Light-
room user, I can export a series of photographs to Adobe Photoshop so I can stitch
them together to make a panorama.” As we’re talking through that story, I recom-
mend that we add “update user manual to reflect new functionality” as one of the
acceptance criteria for that story.

As I write the code or as I’m finishing the feature, I would also edit a document
that provides the user instructions on how to use the feature. Depending on how
stable the feature is, I might even include screen shots that walk the user through how
to do this for both Lightroom and Photoshop. If the feature is less stable, meaning

early in the project late in the projecttime

e
f
f
o
r
t

FIGURE 27-3 Documenting as you go

Lacey_Book.indb 313 2/22/12 1:37 PM

314 Chapter 27 � Documentation in Scrum Projects

the core components are built but the user interface team is still hashing out the user
interface through focus groups, I would document the behavior but probably only
include placeholders for the screen shots. The key here is that the story would not be
done until the user manual is updated.

Updating the user manual would be appropriate to do at the story level, as I
described, but could also be accomplished at the sprint level. For instance, if we have
several stories that revolve around user-facing functionality, we might add a story
during sprint planning that says, “As a user, I want to be able to learn about all the
new functionality added during this sprint in my user manual.”

What I am doing is balancing stability versus volatility of the feature to deter-
mine how deep I go and when. It would not, for example, be prudent to make updat-
ing the user manual part of the definition of done for a task. Too much might change
before the story is complete. Nor would it be acceptable to wait to update the user
manual until right before a release. That’s far too late to start capturing the details of
the new behaviors.

When determining when to document your own systems, you must balance cost,
volatility, and risk. For more on determining your definition of done, refer to Chapter 7.

Starting Projects without Extensive Documentation
One challenge you will have is to help stakeholders and customers understand why
you are not documenting everything up front. Tell them a story like Carter did at the
beginning of this chapter (or share that story with them). Remind them that while
documenting heavily up front drives down the perceived risk, you never know what
you don’t know until a working solution is in place.

Eschewing extensive documentation up front does not mean you are off the hook
for a project signoff piece. But it does mean that the piece will look different to your
stakeholders than it has on other projects. Rather than give them the specific arti-
facts they request, answer the questions they are asking in regards to schedules and
requirements in the most lightweight way possible for your project and situation. A
PMO might, for instance, ask for a Microsoft Project plan, but what the PMO really
wants to know is what will be done by about when. By the same token, a stakeholder
might ask you for a detailed specification, when what she really wants to know is,
“Are you and I on the same page with regards to what I’m asking you to do?”

Signoff and approval will occur early and often. The product owner will hold
many story workshops to build the product backlog, will work with the team to build
the release plan, and will then communicate that information to all interested par-
ties, soliciting enough feedback to ensure that the team will deliver what the stake-
holders had in mind (which is rarely exactly what they asked for). The documents the
product owner uses to do this are only a mode of transportation for ideas and con-
cepts, and a document is not the only way to transfer those ideas. Up-front documen-
tation can just as easily take the form of pictures of whiteboard drawings, sketches,
mockups, and the like—it does not need to a large formal document.

Lacey_Book.indb 314 2/22/12 1:37 PM

 Keys to Success 315

The beginning of the project is when you know the least about what you are
building and when you have the most volatility. What your stakeholders need is the
piece of mind that comes from knowing you understand what they need and can give
them some idea of how long it will take to deliver. Expend the least amount of effort
possible while still giving them accurate information and reassurance. At this point
in the project, everything can and will change.

Keys to Success
The keys to success are simple:

 � Decide—Determine what you need to document for your project and when
it makes the most sense to produce that documentation. Some things, such
as code comments, are easy to time. Other items, such as threat models, are
more difficult. Work as a team with your product owner to determine the
must-have documents at each stage of your project.

 � Commit—Once you have a documentation plan, stick to it. Put it in your
definition of done. Hold yourselves accountable. Documentation is never fun,
even when it’s broken into small chunks. Remind your team that a little bit of
pain will eliminate a great deal of risk come release time.

 � Communicate—If this is the first project to move forward without extensive
up-front documentation, people will be nervous. Help them out, especially
at the beginning of the project, by sending frequent updates, pictures of
whiteboards, and any other documents that are produced. Do like your math
teacher always told you and show your work. Seeing working software and
physical artifacts goes a long way toward calming the fears of even the most
anxious executives.

 � Invest in automation—Documentation is easier and ultimately cheaper if
you invest a little time in automating either the system or the documenta-
tion itself. For example, if you can create an automated script to compile
all the code comments and parse them into documentation, you’ve saved a
manual step and instantly made your documentation more in sync with the
actual code. It’s also much easier to document acceptance test results and API
documents automatically than it would be to do manually. On the flip side,
you might find that automating the features themselves can save you a lot
of documentation work. For example, a manual installation process might
require a 40-page installation guide; an automated installation process, on
the other hand, probably only needs a one-page guide and is better for the
end user as well. Whenever possible, automate either your documentation or
the features it supports. The results are well worth the investment.

Lacey_Book.indb 315 2/22/12 1:37 PM

316 Chapter 27 � Documentation in Scrum Projects

Being agile does not equate to no documentation; it means doing timely, accurate,
responsible documentation. Make sure that documentation is equally represented in
your team’s definition of done alongside things like code and automation. Remember
that when change happens, it’s not just the code that changes—the entire software
package that you are delivering changes, documentation included. Lastly remember
that as much as you might wish otherwise, documentation is a part of every software
project. When you do a little at a time and automate as much as possible, you’ll find
that while it’s still an obligation, it’s not nearly as much of a chore.

References
[BECK] Beck, Kent, et al. “Manifesto for Agile Software Development.” Agile Man-
ifesto website. http://agilemanifesto.org/ (accessed 16 January 2011).

[ULLMAN] Ullman, Ellen. Salon.com. http://www.salon.com/technology/
feature/1998/05/13/feature (accessed 18 November 2010).

Lacey_Book.indb 316 2/22/12 1:37 PM

http://www.salon.com/technology/feature/1998/05/13/feature
http://www.salon.com/technology/feature/1998/05/13/feature
http://agilemanifesto.org/

 365

INDEX

A
Acceptance tests, in TDD, 125–126
Acceptance window, contractual agreement,

354
Accountability, team consultants, 45–46
“Adventures in Promiscuous Pairing...”, 223
Agenda, daily Scrum meeting, 205–206
Agile Estimation and Planning, 62
Agile Project Management with Scrum, 21, 88
Agile Retrospectives, 193, 196, 197
Agile teams, successful outsourcing, 324
Allocating work, successful outsourcing, 325
Applied Imagination, 92
The Art of Agile Development, 125
Articles. See Books and publications.
Artifacts. See Scrum, artifacts; specific artifacts.
Automated integration, in TDD, 125–126
Automating documentation, 315

B
Backlog. See Product backlog.
Beginner’s mind, 222–223, 227
Belshee, Arlo, 222
The Big Wall technique, 334
Blind estimation of team velocity. See also

Estimating team velocity.
decomposing the reference story, 57
estimating velocity, 58–59
versus other techniques, 64
overview, 55–56
points-to-hours approximation, 57
product backlog, 56
team capacity, 57

Blocking issues, daily Scrum meeting, 203
Boehm, Barry, 167, 349
Books and publications

“Adventures in Promiscuous Pairing...”, 223

Agile Estimation and Planning, 62
Agile Project Management with Scrum,

21, 88
Agile Retrospectives, 193, 196, 197
Applied Imagination, 92
The Art of Agile Development, 125
Collaboration Explained, 110–111
Continuous Integration: Improving Software

Quality..., 124
“Developmental Sequence in Small

Groups,” 231
“The Ebb and Flow of Attention...”, 221
The Economics of Software Development...,

125
“How to Control Change Requests,”

346–348
Innovation Games, 195
“Money for Nothing and Changes for

Free,” 350, 353, 355
Mythical Man Month, 42
One Hundred Days of Continuous

Integration, 124
Pair Programming Illuminated, 125
Project Retrospectives: A Handbook..., 197
“Promiscuous Pairing and the Beginner’s

Mind...”, 222
Scrum Emergency Procedures, 253
“Social Structure and Anomie,” 242–247
Software by Numbers, 302
Software Engineering Economics, 167
Software Project Survival Guide, 349
Strategic Management and Organizational

Dynamics..., 13
Succeeding with Agile, 321
User Stories Applied, 355
Working Effectively with Legacy Code, 178
Your Creative Power, 92

Lacey_Book.indb 365 2/22/12 1:37 PM

366 Index

Brainstorming, definition of “done,” 92–93
Breaking up fights, role of the ScrumMaster,

109
Brooks, Fred, 42
Brooks’ Law (adding manpower to late

projects), 42, 229
Budgets, hidden costs of outsourcing, 322–324
Bugs. See Defect management.
Burndown charts

description, 361
sustainable pace, 269–270

Burnout. See Sustainable pace.
bus factor, daily Scrum meeting, 210–211
“Buy a Feature” game, 195

C
Cadence, daily Scrum meeting, 209
Canceling the sprint, 255–256
Cards, collecting user stories, 300–301
Carnegie principles, team culture, 248–249
Categorizing issues, definition of done, 93–94
Change

organizational, role of the ScrumMaster,
111

role of the ScrumMaster, 111
Change, stages of

chaos, 16
foreign element, 16
Kotter’s eight-step model, 28–31
late status quo, 15–16
new status quo, 17
practice and integration, 16–17
Satir’s Stages of Change, 15–17

Change management, contractual agreement,
346–348, 353

Chaos, stage of change, 16
Client role, combining with other roles, 72–75
Code reviews, pair programming as real-time

reviews, 124–125
Code smells, 121–122
Cohn, Mike, 62, 321, 355
Collaboration Explained, 110–111
Commitment, Scrum value, 8
Communication

emergency procedures, 256
enlisting Scrum support, 29–30
release planning, 151

retrospective meetings, 193
Scrum vision, 29–30
successful outsourcing, 327

Completing a project. See Delivering working
software; Done, defining.

Cone of Uncertainty, 349
Confirmation, collecting user stories, 300–301
Conflict avoidance, daily Scrum meetings, 217
Conformity, team culture, 243–247
Consolidating

improvements, 31
issues, 94–96

Contingency plans. See Emergency
procedures.

Continuous integration
successful outsourcing, 327
in TDD, 122–124

Continuous Integration: Improving Software
Quality..., 124

Continuous learning
daily Scrum meetings, 217
implementing Scrum, 18

Contracts
acceptance window, 354
customer availability, 354
keys to success, 353–355
prioritization, 354–355
a story, 341–345

Contracts, ranges and changes model
change management, 353
cost estimation, 351–352
cost per sprint, estimating, 352
deliverables, 353
discovery phase, 351–352
overview, 350
payment options, specifying, 352
release planning, 352
team velocity, determining, 352
timeline, determining, 351–352
versus traditional contracts, 350
user stories, creating and estimating, 351
user types (personas), identifying, 351

Contracts, traditional model
change management, 346–348
Cone of Uncertainty, 349
overview, 345–348
timing, 348–350

Conversations, collecting user stories, 300–301

Lacey_Book.indb 366 2/22/12 1:37 PM

 Index 367

Conway’s Law (organizational structure in the
code), xxiii

Core hours
co-located teams, 134–136
distributed teams, 136–137
keys to success, 138
part-time teams, 137
a story, 131–134

Core teams. See also Teams.
member responsibilities, 71
optimal size, 42–44
skills and competencies, 40–42
a story, 33–37
versus team consultants, 40
working with team consultants, 43–44

Cost
documentation, 310
projects. See Estimating project cost.

Courage, Scrum value, 8
Critical paths, implementing Scrum, 9–11
Culture, team

adding new members, 234
Carnegie principles, 248–249
conformity, 243–247
cultural goals, 242–247
empowerment, 248–249
guidelines, 247–250
innovation, 243–247
institutional means, 242–247
keys to success, 247–250
Merton’s topology of deviant behavior,

243–247
rebellion, 243–247
retreatism, 243–247
ritualism, 243–247
role in outsourcing, 321, 324
social deviance, 242
sprint length, 82–83
a story, 237–242
strain theory, 242–247

Cunningham, Ward, 224
Customers

availability, contractual agreement, 354
environment, sprint length, 82–83
estimating team velocity, 55
sprint length, 82–83
view of product backlog, 335–338

Cycle time, sustainable pace, 268

D
Daily Scrum meetings

agenda, 205–206
blocking issues, 203
bus factor, 210–211
cadence, 209
common obstacles, 201, 204
conflict avoidance, 217
continuous learning, 217
deep dives, 206–207
description, 362
fourth question, 362
glossing over problems, 208
hand signals, 206–207
interruptions, 206
keys to success, 209–211
layout, 205–206
legacy systems, 176
nonverbal communication, 217
punctuality, 205–207
rambling, 208
rhythm, 205–206
scheduling, 204–205
standard three questions, 362
standing versus sitting, 209–210
a story, 201–204
successful outsourcing, 325–326
team consultants, 45
teamwork, 210–211
vagueness, 208

Daily standup meetings. See Daily Scrum
meetings.

Data collection, retrospective meetings,
193

Data gathered over time model, sustained
engineering, 175

Dates. See Planning.
Decomposing stories

estimating team velocity, 57
example, 157–160
granularity, 160, 163–164
a story, 153–155

Decomposing tasks
estimating task sizes, 160–163
example, 160–163
granularity, 160, 163–164
sprint length, 83–84
a story, 153–155

Lacey_Book.indb 367 2/22/12 1:37 PM

368 Index

Decomposing themes
example, 159
granularity, 160, 163–164

Dedicated team model, sustained engineering,
175–177

Dedicated teams. See Core teams.
Dedicated time model, sustained engineering,

174, 178
Deep dives, daily Scrum meeting, 206–207
Defect management

frequent testing, 167
keys to success, 169
on legacy systems, 169
overview, 166–168
pair programming, 124–125
setting priorities, 167–168
a story, 165–166
value, optimizing and measuring, 290–291

Definition of done. See Delivering working
software; Done, defining.

Degree of confidence, release planning, 145
Delivering working software. See also Done,

defining.
definition of done, 279–280
end-to-end scenarios, 282–283
expansion, 279–280
identifying a core story, 277–278
keys to success, 280–283
limiting user access, 278–279
prioritizing risk, 279
rework, 281–282
a story, 273–276
validation, 279–280
window of opportunity, 279

DeMarco, Tom, 270
Derby, Esther, 193, 196, 197
Design concept cards, 223
Development practices, hidden costs of

outsourcing, 322
Development teams. See Core teams.
“Developmental Sequence in Small Groups,”

231
Developmental stages, team growth, 231–234
Discovery phase, contractual agreement,

351–352
Documentation

in agile projects, 313
automating, 315

committing to, 315
common documents, list of, 310
cost, 310
explaining your process, 315
keys to success, 315–316
list of features and functions. See Product

backlog; Sprint backlog.
planning for, 314–315
purpose of, 309
sprint review meeting decisions, 186
stability versus volatility, 314
starting projects without, 314
a story, 305–308
versus working software, 308

Documentation, approaches to
early, 311
late, 311–312
as you go, 312–313

Dollar demonstration, 281
Done, defining. See also Delivering working

software.
brainstorming, 92–93
categorizing issues, 93–94
consolidating issues, 94–96
creating the definition of done, 96
exercise, 91–97
keys to success, 97
participants, 92
purpose of, 96
sample “done” list, 90
sorting issues, 94–96
a story, 89–91
in TDD, 128
undone work, 97

“Done” list, sample, 90
Duration, sprint review meetings, 183
Duvall, Paul M., 124

E
“The Ebb and Flow of Attention...”, 221
The Economics of Software Development..., 125
Educating

individuals, TDD, 128
organizations. role of the ScrumMaster, 111
stakeholders, 292

Education in TDD, 128
Efficiency versus effectiveness, 270–271

Lacey_Book.indb 368 2/22/12 1:37 PM

 Index 369

Einstein, Albert, on problem solving, 9
Emergency procedures, team options

canceling the sprint, 255–256
communication, 256
don’t panic, 256
getting help, 254
keys to success, 256
maintaining focus, 256
overview, 253–254
reducing scope, 254–255
removing impediments, 254
a story, 251–253

Employee costs
estimating project costs, 302–303
outsourcing, 321
role of the ScrumMaster, 105–108

Empowerment
enlisting support for Scrum, 30
team culture, 248–249

End game, release planning, 149–150
Ending a project. See Delivering working

software; Done, defining.
End-to-end scenarios, 282–283
Engineering practices. See Sustained

engineering; TDD (Test-Driven
Development).

Environment
customer, sprint length, 82–83
physical, retrospective meetings, 193
political, estimating team velocity, 55

Epics, definition, 156
Erdogmus, Hakan, 125
Estimates, as commitments, 52
Estimates, relative

in cost estimation, 297–299, 301
Fibonacci sequence, 57, 297

Estimating
product backlog. See Product backlog,

prioritizing and estimating.
project resources. See Estimating project

cost.
remaining workload. See Burndown.
trends in task completion. See Burndown.

Estimating project cost
contractual agreement, 351–352
cost per sprint, 352
employee costs, 302–303

functional specifications, 300
keys to success, 303–304
MMF (minimal marketable feature) set, 302
outsourcing, hidden costs, 322–324
planning poker technique, 301
release planning, 303
roughly right versus precisely wrong, 301
a story, 295–299
team velocity, 302
techniques for, 301

Estimating project cost, user stories
cards, 300–301
confirmation, 300–301
conversations, 300–301
creating, 300–301
prioritizing, 302
sizing, 295–299, 301
three C’s, 300–301

Estimating team velocity
comparison of techniques, 64
estimates as commitments, 52
from historical data, 55–56, 64
keys to success, 63–65
multipliers, 62–63
political environment, 55
product owner and customer, 55
for project cost, 302
project size and complexity, 55
with real data, 59–62, 64
a story, 49–54
team newness, 55
truncated data collection, 62–63
variables, 55–56

Estimating team velocity, by blind estimation
decomposing the reference story, 57
estimating velocity, 58–59
versus other techniques, 64
overview, 55–56
points-to-hours approximation, 57
product backlog, 56
team capacity, 57

Expansion, delivering working software,
279–280

Expendability of team members, 210–211
Extending sprint length, 88
External focus, pair programming, 221
Extreme Programming (XP), 12–13

Lacey_Book.indb 369 2/22/12 1:37 PM

370 Index

F
Facilitation, role of the ScrumMaster, 110–111
Feathers, Michael, 178
Feature list. See Product backlog; Sprint

backlog.
Feature work, 288
Fibonacci sequence, 57, 297
Finishing a project. See Delivering working

software; Done, defining.
FIT (Framework for Integrated Tests), 83–84
Focus, Scrum value, 8
Foreign element, stage of change, 16
Forming, stage of team development, 231–234
Fourth question, daily Scrum meetings,

213–217, 362
Fowler, Martin, 122, 178
Function list. See Product backlog; Sprint

backlog.
Functional specifications, estimating project

cost, 300

G
Gabrieli, John, 221
Geographic distance, costs of outsourcing, 324
Glossing over problems, daily Scrum meeting,

208
Granularity, decomposing stories, 160,

163–164
Group cohesion, costs of outsourcing, 321
Guiding coalition, enlisting support for

Scrum, 29

H
Hand signals, daily Scrum meeting, 206–207
Hedden, Trey, 221
Help, emergency procedures, 254
Helping out, role of the ScrumMaster, 110–111
Hiring (outsourcing) north/south versus east/

west, 324–325
Historical data, estimating team velocity,

55–56, 64
Hitting the wall, 263–265
Hofstede, Geert, 321
Hohmann, Luke, 195
Home Improvement TV show, 9

“How to Control Change Requests,” 346–348
Humphrey’s Law (gathering user

requirements), xxiii

I
IBM

key dimensions of cultural variety, 321
TDD, benefit in teams, 120

Implementing Scrum. See also People,
enlisting support of.

combining with Extreme Programming,
12–13

continuous learning, 18
exposing issues, 12
identifying critical paths, 9–11
keys to success, 17–18
learning base mechanics, 17
in midstream, 18
patience, 17–18
potentially shippable code, 13
Scrum planning versus traditional

methods, 10–11
shifting mindsets, 9
a story, 1–6
underlying values, 7–9
understanding the rules, 17

Improving existing code, 121–122. See also
Refactoring.

Innovation, team culture, 243–247
Innovation Games, 195
Institutional means, team culture, 242–247
Institutionalizing new approaches, 31
Internal focus, pair programming, 221
Interruptions, daily Scrum meeting, 206

J
Jansen, Dan, 221

K
Kerth, Norman, 197
Kessler, Robert, 125
Kotter, John, 28
Kotter’s model for enlisting support for

Scrum, 28–31

Lacey_Book.indb 370 2/22/12 1:37 PM

 Index 371

L
Larsen, Diana, 193, 196, 197
Late status quo, stage of change, 15–16
Laws of software development

Brooks’ Law (adding manpower to late
projects), 42

Conway’s Law (organizational structure in
the code), xxiii

Humphrey’s Law (gathering user
requirements), xxiii

Ziv’s Law (predictability), xxii–xxiii
Layout, daily Scrum meeting, 205–206
Learning organizations, 33
Legacy systems. See also Sustained

engineering.
daily releases and standups, 176
defect management, 169
goal planning, 176
keys to success, 177–178
retiring, 178
retrofitting, 178
stakeholder meetings, 176–177
a story, 171–173
strangler applications, 178
tribal knowledge, 172

Legal agreements. See Contracts.

M
Maintaining

old code. See Legacy systems; Sustained
engineering.

the release plan, 148–149
Management support for team consultants, 46
Managing people, role of the ScrumMaster,

109
Martin, Robert, 122
Master list. See Product backlog; Sprint

backlog.
McConnell, Steve, 349
Meetings. See also Planning.

chairs. See Standing versus sitting.
daily. See Daily Scrum meetings.
sitting. See Standing versus sitting.
a story, 1–6
team consultants, 44–45
types of, 361–364. See also specific meetings.

Merton, Robert K., 242–247

Merton’s topology of deviant behavior, 243–247
Micro-pairing, pair programming, 223–227
Miller, Ade, 124
MMF (minimal marketable feature) set, 302
“Money for Nothing and Changes for Free,”

350, 353, 355
Multipliers, estimating team velocity, 62–63
Myers, Ware, 43
Mythical Man Month, 42

N
New status quo, stage of change, 17
Nielsen, Dave, 346
Noise reduction, pair programming, 124
Nonverbal communication, daily Scrum

meetings, 217
Norming, stage of team development, 231–234

O
Offshoring. See Outsourcing; Team members,

adding.
One Hundred Days of Continuous Integration,

124
Openness, Scrum value, 8
Outsourcing, hidden costs

cultural challenges, 321
cultural differences, 324
development practices, 322
estimating budgets, 322–324
geographic distance, 324
group cohesion, 321
increased overhead, 321
long-term retention, 321
project management, 321
transition costs, 320–321
working across time zones, 324

Outsourcing, keys to success
agile teams, 324
allocating the work, 325
continuous integration, 327
contraindications, 328–329
daily standups, 325–326
hiring north/south versus east/west,

324–325
maintaining the Scrum framework,

325–326

Lacey_Book.indb 371 2/22/12 1:37 PM

372 Index

Outsourcing, keys to success (continued)
paired programming, 326–327
project management, 328
real-time communication, 327
retrospectives, 326
sprint reviews, 326
team building, 324–325
travel requirements, 327–328
work packages, 325

Outsourcing, a story, 317–320. See also Team
members, adding.

Overloading team consultants, 47

P
Pacing. See Sustainable pace.
Pair churn, 222
Pair cycle time, 222
Pair programming

beginner’s mind, 222–223, 227
benefits of, 124–125
bug reduction, 124
design concept cards, 223
distractions, 221, 227
external focus, 221
integrating new team members, 230
internal focus, 221
keys to success, 226–227
micro-pairing, 223–227
noise reduction, 124
outsourcing, 326–327
pair churn, 222
pair cycle time, 222
ping-pong pattern, 224
promiscuous pairing, 222–223
as real-time code reviews, 124–125
a story, 219–221
in TDD, 124–125

Pair Programming Illuminated, 125
Pair Programming Ping Pong Pattern, 224
Papers. See Books and publications.
Parking unresolvable disagreements, 339
Patterns, determining, 293
Patton, Jeff, 281
Payment options, contractual agreement, 352
Peck, M. Scott, 21
People, enlisting support of. See also

Management; Teams.
communicating a vision, 29–30

consolidating improvements, 31
creating a vision, 29
creating short-term wins, 31
empowering participants, 30
establishing a sense of urgency, 28–29
forming a guiding coalition, 29
institutionalizing new approaches, 31
keys to success, 31–32
Kotter’s eight-step model, 28–31
sponsors, 29
a story, 21–28

Performing, stage of team development,
231–234

Personas (user types), identifying, 351
Personnel. See Management; People; Teams.
Physical environment, retrospective meetings,

193
Ping-pong pattern, pair programming, 224
Planning. See also Estimating; Meetings.

goals for legacy systems, 176
list of features and functions. See Product

backlog; Sprint backlog.
prioritizing and estimating product

backlog, 338
releases. See Release planning.
retrospective meetings, 192–194
Scrum versus traditional methods, 10–11
sprint review meetings, 185
a story, 1–6
for team consultant downtime, 47

Planning meetings
description, 361–362
team consultants, 44–45

Planning poker technique, estimating project
cost, 301

Points-to-hours approximation, 57
Political environment, estimating team

velocity, 55
Potentially shippable code

implementing Scrum, 13
a story, 273–276. See also Delivering

working software.
PowerPoint slides

a story, 180–182
template for, 183–184

Practice and integration, stage of change, 16–17
Preconditions for sprints, 290
Preplanning, prioritizing and estimating

product backlog, 338

Lacey_Book.indb 372 2/22/12 1:37 PM

 Index 373

Principles of class design, 122
Prioritizing

by business value and risk, 359–360
contractual agreement, 354–355
defect management, 167–168
issues in retrospective meetings, 190–191,

194–195
items for release planning, 151
product backlog. See Product backlog,

prioritizing and estimating.
risks, delivering working software, 279
user stories, 302

Problem resolution, role of the ScrumMaster,
109

Product backlog. See also Sprint backlog.
definition, 359–360
estimating team velocity, 56

Product backlog, prioritizing and estimating
The Big Wall technique, 334
customer view, 335–338
emulating the team, 334–335
focusing discussion, 338–339
keys to success, 338–339
meeting supplies, 339
overview, 359–360
parking unresolvable disagreements, 339
preplanning, 338
setting time limits, 338–339
shifting estimates, 340
stakeholder view, 335–338
a story, 331–333

Product owner role
canceling the sprint, 255–256
combining with other roles, 72–75
definition, 358
estimating team velocity, 55
responsibilities, 71
in retrospectives, 194

Progress reporting. See Daily Scrum meetings;
Retrospective meetings; Sprint review
meetings; Value, optimizing and
measuring.

Project management
duties mapped to roles, 72–73
hidden costs of outsourcing, 321
successful outsourcing, 328

Project Retrospectives: A Handbook..., 197
Projects

cost estimation. See Estimating project cost.

duration, sprint length, 81–82
ranking complexity, 13–14
size and complexity, estimating team

velocity, 55
Promiscuous pairing, 222–223
“Promiscuous Pairing and the Beginner’s

Mind...”, 222
Provost, Peter, 223–224
Publications. See Books and publications.
Punctuality, daily Scrum meeting, 205–207
Putnam, Lawrence, 43

Q
Quality. See Value.
Questions, daily Scrum meetings

fourth question, 213–217, 362
keys to success, 216–217
standard three questions, 362
a story, 213–216

Questions, sprint retrospective meetings, 363
Quiz for determining sprint length, 84–86

R
Rambling, daily Scrum meeting, 208
Ranges and changes contracts. See Contracts,

ranges and changes model.
Rants, retrospective meetings, 190
Rate-limiting paths. See Critical paths.
Rating the sprint, retrospective meetings,

195–196
Real data, estimating team velocity, 59–62,

64
Rebellion, team culture, 243–247
Refactoring old code, 121–122
Relative estimates

in cost estimation, 297–299, 301
Fibonacci sequence, 57, 297

Release planning
adding dates, 145–148
communication, 151
contractual agreement, 352
degree of confidence, 145
delivering working software, 152
determining the end game, 149–150
estimating project costs, 303
inputs, 143
keys to success, 151–152

Lacey_Book.indb 373 2/22/12 1:37 PM

374 Index

Release planning (continued)
maintaining the plan, 148–149
outcomes, 149–150
a preliminary roadmap, 143–145
prioritizing work items, 151
refining estimates, 151
Scrum planning, 152
a story, 139–142
updating the plan, 151
Removing impediments, role of the

ScrumMaster, 109
Reporting

progress. See Daily Scrum meetings;
Retrospective meetings; Sprint review
meetings; Value, optimizing and
measuring.

team performance, role of the
ScrumMaster, 109–110

Resolving problems, role of the ScrumMaster,
109

Respect, Scrum value, 8
Retreatism, team culture, 243–247
Retrofitting legacy systems, 178
Retrospective meetings

attendance, 194
basic principles, 196–197
benefits of, 192
“Buy a Feature” game, 195
communication, 193
data collection, 193
description, 363–364
due diligence, 192
ground rules, 193–194
importance of, 197
keys to success, 196–197
physical environment, 193
planning, 192–194
prioritizing issues, 190–191, 194–195
purpose of, 196
rants, 190
rating the sprint, 195–196
running, 194–196
scheduling, 197
standard two questions, 363
standing versus sitting, 193
a story, 189–191
successful outsourcing, 326
team consultants, 45

timing, 193
Rework, delivering working software, 281–282
Rhythm, daily Scrum meeting, 205–206
Risks

adding team members, 235
prioritizing, 279, 359–360

Ritualism, team culture, 243–247
Roles

choosing, 72–73
descriptions, 357–359. See also specific roles.
key competencies, 72–73
keys to success, 76
mapped to project manager duties, 72–73
mixing, 72–75
a story, 67–70

Rothman, Johanna, 167
Roughly right versus precisely wrong, 301

S
Satir’s Stages of Change, 15–17
Scheduling. See also Done, defining.

daily Scrum meeting, 204–205
retrospective meetings, 197
undone work, 97

Schwaber, Ken, 7, 21, 88
Scrum

artifacts, types of, 359–361. See also
specific artifacts.

definition, 6–7
evaluating your need for, 13–14
getting started. See Implementing Scrum.
meetings, types of, 361–364. See also

specific meetings.
planning, 152. See also Release planning.

Scrum Emergency Procedures, 253
Scrum framework, successful outsourcing,

325–326
Scrum roles. See Roles.
Scrum values

commitment, 8
courage, 8
focus, 8
openness, 8
respect, 8

ScrumMaster
combining with other roles, 72–75
definition, 358

Lacey_Book.indb 374 2/22/12 1:37 PM

 Index 375

responsibilities, 71
rotating among team members, 76

ScrumMaster, as full-time job
breaking up fights, 109
day-to-day tasks, 108–112
driving organizational change, 111
educating the organization, 111
employee costs, 105–108
facilitating team activities, 110–111
helping out, 110–111
impact on the team, 102–108
key functions, 101
managing people, 109
removing impediments, 109
reporting team performance, 109–110
resolving problems, 109
servant leadership, 110–111
a story, 99–102

Sense of urgency, enlisting support for Scrum,
28–29

Servant leadership, role of the ScrumMaster,
110–111

Shippable code. See Potentially shippable code.
Shore, James, 125
Short-term wins, enlisting support for Scrum,

31
Size

core teams, 42–44
team consultants, 42–44
user stories, 295–299, 301

Slides
a story, 180–182
template for, 183–184

Social deviance, team culture, 242
“Social Structure and Anomie,” 242–247
Software cycles, sustainable pace, 265–268
Software development. See Projects.
Software Engineering Economics, 167
Software Project Survival Guide, 349
SOLID class design principles, 122
Sorting issues, definition of done, 94–96
Spikes, 289–290
Sponsors, enlisting support for Scrum, 29
Sprint backlog, 360–361. See also Product

backlog.
Sprint length

choosing, 80–81, 84–86
corporate culture, 82–83

criteria for, 80–81
customer environment, 82–83
customer group, 82–83
decomposing tasks, 83–84
in excess of four weeks, 88
extending, 88
FIT (Framework for Integrated Tests),

83–84
guidelines for, 84–86
keys to success, 87–88
project duration, 81–82
quiz for determining, 84–86
Scrum team, 83–84
stakeholder group, 82–83
a story, 77–80

Sprint retrospective meetings. See
Retrospective meetings.

Sprint review meetings. See also Daily Scrum
meetings.

description, 363
documenting decisions, 186
duration, 183
encouraging participants, 186
keys to success, 185–186
overview, 182–183
planning, 185
preparing for, 183–184
running, 184
stories, customer acceptance, 186
a story, 179–182
successful outsourcing, 326
team consultants, 45

Sprint review meetings, PowerPoint slides
a story, 180–182
template for, 183–184

Sprints
canceling, 255–256
cost. See Estimating project cost.
preconditions for, 290
rating during retrospective meetings,

195–196
reducing scope, 254–255
removing impediments, 254

Stability versus volatility, documentation, 314
Stacey, Ralph, 13–14
Stakeholders

educating, 292
meetings, legacy systems, 176–177

Lacey_Book.indb 375 2/22/12 1:37 PM

376 Index

Stakeholders (continued)
prioritizing and estimating product

backlog, 335–338
sprint length, 82–83

Standing versus sitting
daily Scrum meeting, 209–210
retrospective meetings, 193

Standup meetings. See Daily Scrum meetings.
Sterling, Chris, 13
Stories

creating and estimating, contractual
agreement, 351

decomposing. See Decomposing stories.
definition, 156
dollar demonstration, 281
gaining customer acceptance, 186
hierarchy of, 156

Stories, estimating project cost
cards, 300–301
confirmation, 300–301
conversations, 300–301
creating, 300–301
prioritizing, 302
sizing, 295–299, 301
three C’s, 300–301

Storming, stage of team development, 231–234
Strain theory, team culture, 242–247
Strangler applications, legacy systems, 178
Strategic Management and Organizational

Dynamics..., 13
Succeeding with Agile, 321
Sustainable pace

burndown charts, 269–270
burnout, 265–270
cycle time, 268
efficiency versus effectiveness, 270–271
hitting the wall, 263–265
increasing team time, 270
keys to success, 270–271
monitoring progress, 269–270
shortening iterations, 268
software cycles, 265–268
a story, 261–265

Sustained engineering. See also Legacy systems.
daily releases and standups, 176
goal planning, 176
keys to success, 177–178
retiring the legacy system, 178
retrofitting legacy code, 178

stakeholder meetings, 176–177
a story, 171–173
strangler applications, 178
tribal knowledge, 172

Sustained engineering models
data gathered over time, 175
dedicated team, 175–177
dedicated time, 174, 178

Sutherland, Jeff, 7, 253, 350, 353, 355

T
Tabaka, Jean, 110–111
Tasks, decomposing

estimating task sizes, 160–163
example, 160–163
granularity, 160, 163–164
sprint length, 83–84
a story, 153–155

Tasks, definition, 156
Taxes on team performance, 288–289
Taylor, Tim “The Toolman,” 9
TDD (Test-Driven Development)

acceptance tests, 125–126
automated integration, 125–126
benefit in teams, 120
benefits of, 128–129
building into the product backlog, 128
code smells, 121–122
continuous integration, 122–124
definition of done, 128
getting started, 127
implementing, 119–121
improving existing code, 121–122
key practices, 119
keys to success, 126–129
limitations of, 127
pair programming, 124–125
principles of class design, 122
refactoring, 121–122
a story, 115–119
team buy in, 128
team status, 122–124
test automation pyramid, 125–126
training and coaching, 128

Team consultants
accountability, 45–46
versus core teams, 40, 47
establishing a pool, 38–40

Lacey_Book.indb 376 2/22/12 1:37 PM

 Index 377

keys to success, 45–47
management support, 46
meetings, 44–45
optimal size, 42–44
overloading, 47
overview, 37–38
planning for downtime, 47
skills and competencies, 40–42
a story, 33–37
time management, 39–40
transition plans, 38–39
working with core teams, 44

Team members
bus factor, 210–211
combining with other roles, 72–75
expendability, 210–211
rotating the ScrumMaster role, 76

Team members, adding. See also Outsourcing.
Brooks’ Law (adding manpower to late

projects), 42, 229
considering team culture, 234
developmental stages, 231–234
drop in velocity, 234
forming, 231–234
group cohesion, 321
integrating new members, 230, 233–234
keys to success, 234–235
norming, 231–234
pair programming, 230
performing, 231–234
risks, 235
storming, 231–234
a story, 229–231
testing competencies, 230–231, 234

Team velocity
contractual agreement, 352
definition, 49
estimating. See Estimating team velocity.
estimating project cost, 302
penalty for adding team members, 234
a story, 49–54

Teams. See also People.
auxiliary. See Team consultants.
building, successful outsourcing, 324–325
buy in to TDD, 128
capacity, estimating team velocity, 57
co-located, 134–136
dedicated. See Core teams.
definition, 358–359

distributed, 136–137
long-term retention, hidden costs of

outsourcing, 321
newness, estimating team velocity, 55
optimal size, 33
part-time, 137
prioritizing and estimating product

backlog, 334–335
reporting performance, role of the

ScrumMaster, 109–110
sprint length, 83–84
status reporting, 122–124
taxes on performance, 288–289
work schedules. See Core hours.

Teamwork, daily Scrum meeting, 210–211
Test-Driven Development (TDD). See TDD

(Test-Driven Development).
Testing. See also TDD (Test-Driven

Development).
automation pyramid, TDD, 125–126
competencies of new team members,

230–231, 234
frequent, effects on defects, 167

Themes
decomposing, 159, 163–164
definition, 156

Three C’s of user stories, 300–301
Time limits, prioritizing and estimating

product backlog, 338–339
Time management, team consultants, 39–40
Time zones, hidden costs of outsourcing, 324
Timeline, contractual agreement, 351–352
Timing

contractual agreement, 348–350
retrospective meetings, 193

Traditional contracts. See Contracts,
traditional model.

Training and coaching. See Education.
Transition plans

hidden costs of outsourcing, 320–321
team consultants, 38–39

Transparency, 287–288
Travel requirements, successful outsourcing,

327–328
Trends, determining, 293
Tribal knowledge, 172
Truncated data collection, estimating team

velocity, 62–63
Tuckman, Bruce, 231

Lacey_Book.indb 377 2/22/12 1:37 PM

378 Index

U
Ullman, Ellen, 309
Undone work, rescheduling, 97
User stories. See Stories.
User Stories Applied, 355
User types (personas), identifying, 351

V
Vagueness, daily Scrum meeting, 208
Validation, delivering working software, 279–280
Value, optimizing and measuring

defect management, 290–291
determining trends and patterns, 293
educating stakeholders, 292
feature work, 288
keys to success, 292–293
preconditions, 290
presenting data, 291–292
spikes, 289–290
a story, 285–287
structuring data, 291
taxes on team performance, 288–289
transparency, 287–288

Values, Scrum
commitment, 8
courage, 8
focus, 8
implementing Scrum, 7–9

openness, 8
respect, 8

Velocity. See Team velocity.
Vision, enlisting support for Scrum, 29

W
Wall, hitting, 263–265
Williams, Laurie, 125
Wilson, Brad, 223–224
Wilson, Woodrow, on change, 111
Window of opportunity, delivering working

software, 279
Work packages, 325
Working Effectively with Legacy Code, 178
Workload estimation. See Burndown.

X
XP (Extreme Programming), 12–13

Y
Your Creative Power, 92

Z
Ziv’s Law (predicting software development),

xxii–xxiii

Lacey_Book.indb 378 2/22/12 1:37 PM

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 27 Documentation in Scrum Projects
	The Story
	The Model
	Keys to Success
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

